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The diffusive characteristics of two upwind schemes, multi-dimensional fluctu-
ation splitting and locally one-dimensional finite volume, are compared for scalar
advection—diffusion problems. Algorithms for the two schemes are developed for
node-based data representation on median-dual meshes associated with unstructured
triangulations in two spatial dimensions. Four model equations are considered: lin-
ear advection, non-linear advection, diffusion, and advection—diffusion, with cases
chosen to mimic features present in compressible gas dynamics. Modular coding is
employed to isolate the effects of the two approaches for upwind flux evaluation,
allowing for head-to-head accuracy and efficiency comparisons. Both the stability of
compressive limiters and the amount of artificial diffusion generated by the schemes
are found to be grid-orientation dependent, with the fluctuation splitting scheme
producing less artificial diffusion than the finite volume scheme. Convergence rates
are compared for an advection—diffusion problem, with a speedup of 2.5 seen for
fluctuation splitting versus finite volume when solved on the same mesh. However,
accurate solutions to problems with small diffusion coefficients can be achieved on
coarser meshes using fluctuation splitting rather than finite volume, so that when
comparing convergence rates to reach a given accuracy, fluctuation splitting shows
a speedup of 29 over finite volume for the test problem) 1999 Academic Press
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INTRODUCTION

Upwind discretizations for advection equations typically introduce artificial numeri
dissipation into the solution. When combined advection—diffusion problems are consid
this dissipation introduced in the discretization of the advection terms should be less the
true physical diffusion. Here, the diffusive charactersitics of upwind advection scheme
investigated on unstructured triangulations, and their performance in resolving solutio
combined advection—diffusion problems, with small diffusion coefficients, is quantitativ
assessed.
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Two node-based, median-dual methods for modeling convective fluxes are conside
The first is a traditional locally one-dimensional approximate Riemann solver finite volur
(FV) scheme [1]. Locally one-dimensional schemes applied on multidimensional doma
are known to introduce excess dissipation when discontinuities are not aligned with
mesh [2].

The second method is the narrow non-linear [3] fluctuation splitting (FS) scheme, a
referred to in the literature as a residual distribution scheme. FS has a more compact st
than FV for second-order formulations and exhibits zero cross diffusion in a grid-align
condition. Both of these attributes should lead to less artificial dissipation as compared \
FV.

The sensitivity of FS and FV to grid orientation and resulting production of cross diffusic
is investigated in the present report. The use of compressive limiter functions is also te
with both algorithms. Local timesteps based on positivity arguments are implemented
both first- and second-order discretizations of the implicit matrix.

Formulation of FS schemes for diffusion problems is a recent research area [4, 5].°
present study seeks to quantify the relative merits of using a low-diffusion advection oper:
to resolve advection—diffusion problems with small diffusion coefficients. Lessons learr
on these problems will guide the development of computer codes for solving compress
viscous fluid dynamic problems. A similar approach for central difference schemes w
explicit numerical dissipation has recently been taken by Efraimsson [6].

The model problems considered are linear advection, non-linear advection, linear
fusion, and linear advection—diffusion. These problems are intended to mimic beha
expected from applications to gas dynamics such as supersonic, inviscid, perfect-gas
(non-linear advection), and high-Reynolds-number shear flows (advection—diffusion).

GOVERNING EQUATIONS
The non-linear advection—diffusion equation,
Uu+V-F=V.wvu), (1)

is cast as a hyperbolic conservation law, to which steady-state solutions are sought. |
u is the dependent variabl& = F(x, y, u) is the convective flux function, and is the
diffusion coefficient.

Finite Volume

In FV form, using the divergence theorem Eq. (1) becomes

/utdﬂz—%(ﬁ—uVu)-ﬁdF, )
Q I

whereQ is the median dual about nodlel” is the boundary of2, andf is the outward
unit normal to control cell. Using mass lumping to the nodes, similar to an explicit fini
element treatment [7], the temporal evolution is evaluated on a time-invariant mesh as

/utdQ=S%—> E(u}*’—ui‘), (3)
o ot

T

wheres§ is the median-dual area about nadendr is the time step.
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The discretization of the convective fluk, is constructed following Barth's [1] imple-
mentation of the upwind, locally one-dimensional, approximate Riemann solver of F

(81,
£F~ﬁdr—>z

faces

1= = .
E(Fin‘i‘Fout)'n_@ AT, (4)

where the artificial dissipatior®, provides the upwinding,
1~ ~
d = §|Anx -+ Bily|(Uout — Uin), ®)

with Ai=A,T+fyj (T andj are the Cartesian unit vectors). “Out” and “in” refer to state
on the outside and inside 6f at the face A and B are the flux Jacobians in theand j
directions, respectively,

IF® IF®@
A: 5 B:
ou au

: (6)

and (A, B) represent their conservative linearizations at the cell face [8].
Piecewise linear reconstruction from the nodal unknowns to the cell faces as

Utace= Ui + ¥ VU - T (7

provides second-order spatial accuracy in smoothly varying regions of the softisdhe
position vector from the node to the face. Median-dual gradients of the dependent vari
YU, are obtained from the unweighted least squares procedure outlined by Barth. Follo
Bruner and Walters [9], the limiter functiom, is supplied an argument equal to half the
argument Barth uses, namely,

umin/max —u

I

l/f = w <2(VuF)mm/maX> ’ (8)
whereu™"maxjs the minimum (resp. maximum) of and all distance-one neighbors. The
more restrictive constraint from using either the maximum or minimum is used to set
limiter value.

In casting the limiter argument in this form, Bruner equates the Barth limiter wi
Superbee, for a limiter argument less than or equal to one. The Barth limiting is n
symmetric, taking the form

0 e=<0
1/,(;’): 22 if0<P<i )
1 =3

for the limiter as cast in Eq. (8). In Eq. (9,andq are dummy arguments for the limiter.
Two methods for evaluating the physical diffusion term are incorporated into FV. T
more compact of the two, the finite element discretization, is discussed in the follow
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section. The less compact diffusion formula is obtained by discretizing the last term
Eq. (2), in a manner similar to Eq. (4),

. v N
fr yVu-Adl — Z 5(VUin + Vlou) - AT (10)

faces

The diffusion coefficient is averaged over the length of the face. The gradients frc
Eq. (7) are not limited before averaging at the control-volume faces in Eq. (10). Discretizi
the diffusion terms in this manner would lead to a five-point stencil on a one-dimensio
structured mesh.

Fluctuation Splitting

The NNL FS scheme is presented as a slight rederivation of the work of Sidilkover &
Roe [3]. The current interpretation is as a volume integral over triangular elements, with
recourse to the divergence theorem. The discretized equations, however, are identical

Integrating Eqg. (1) over an element, wh&tés now the area of the triangular element,

/utsz—/V-IEdQ—i—/V-(vVu)dQ. (11)
Q Q Q
For linear variation of the dependent variable over the element, the temporal evolution

/UtdQZQth:
Q

whereus, Up, andus correspond to the three nodes defining elengzant
Defining local curvilinear coordinates,andy, parallel to sided2 and23, respectively
(Fig. 1), the divergence of the convective flux can be written

Q
3 (Ul‘ + Uy + Ugt), (12)

5 1
V- F=FP+F?=—"2(f F; — - F,), (13)

FIG. 1. Fluctuation splitting element nomenclature.
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where J~1 is the inverse Jacobian of the coordinate transformation. Defining the sce
inward normaln = —hf, whereh is a mesh edge length, the divergence (Eq. (13)) becon

- 1 - >
V- F= E(—hlgng . Fg + hozny - F,]) (14)

A feature of Sidilkover's scheme is that the choice is arbitrary for which two of the thr
sides of the triangle to use ferandn, provided they follow a right-hand rule for axes. Mos
other FS implementations [10-12] require the identification of inflow and outflow edc
to set the local coordinates for each cell. Preliminary numerical tests during the pre
study varied the choice of sides fdf, {7), and while the transient behavior differed, the
converged steady-state solutions were identical. For all results presented here the c
for the €, n) vertex is chosen arbitrarily to be the second node of the triangle as define
the grid generator.
If F is linear or guadratic i, then for a linear variation af over the element,

/ V.FdQ = aAx U+ BAszoU, (15)
Q
where the difference operator is defineddgsu = u, — uy, and the advection speeds are

(1, A+ny, B), (16)

NI =

1 ~ ~
GZ—E(I’IZXA—FHZVB), B =

whereA and B are now conservative linearizations over the triangular element [13].
The advective fluctuatiom, is defined as

¢=—/v.|5ds2. (17)
Q
The fluctuation is split according to
b =¢"+¢", (18)
where
¢F = —aAnu, ¢" = —BAszU. (19)

Following Sidilkover [14] the fluctuation is limited to achieve a second-order scher
The limited fluctuations are given by

¢ = ¢* +¢"Y(Q) = ¢* (1—%@) " =¢"—¢"Y(Q) = ¢"(1-¥(Q)), (20)
with
&
Q--%. (21)

Upwinding is achieved through the introduction of artificial dissipation terms,

¢° =signa)¢t, ¢ = signp)e" . (22)
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Combining Eq. (12) with a distribution scheme for Eq. (17) and summing over all el
ments, the contributions to nodal time derivatives can be written in the form

Siuy, <« %(qﬁ* — ¢%) + COE
Suz < %(dﬁ* +6°) + %(dﬂ* —¢") + COE (23)
SeUz, < %(qﬁ"* +¢") + COE

where COE stands for contributions from other elements containing these nodes. The n
distribution formula can also be written in a compact form,

Suj, < %[i B - (¢ + (=1)'¢°) + (—4+5 —i?)(¢" — (=1)'¢")] + COE (24)

A finite element treatment, similar to that of Tomaich [4], is employed to obtain th
diffusive fluctuationg,, as

¢U=/V-(vVu)dQ. (25)
Q

Assuming piecewise-linear data and an element-averaged diffusion coefficient leads
diffusive fluctuation of zero for the triangular element. Introducing the linear nodal sha
functionsd;, such thatzf‘:l 9% = 1, the elemental diffusive fluctuation can be expresse
¢y =52, ¢, =0, where

b :/ﬁiV~(vVu)dQ. (26)
Q

Integrating by parts,

b :}(ﬁiwu.ﬁ dr —/vVu~Vz§‘i dQ. (27)
r Q

The boundary integral in Eq. (27) will cancel upon summing contributions for interic
nodes. The remaining volume integral can be evaluated analytically,

by, = —EVU Nij1 = —49 Zu Nji1-Nig1. (28)
j=1

Distributing this diffusive fluctuation to the nodes and keeping only the larger of the physit
or artificial dissipation leads to the update formula,
¢F ( </i>E

Siuy, < - + max > ¢v1> + COE

&* * pE
Sy, # + max( @ . @) ¢vz> + COE (29)

S < ﬂ + max<¢2n ¢U3> + COE
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BOUNDARY CONDITIONS

Explicit Dirichlet inflow boundary conditions are employed. Advective outflow boun
aries are treated for free convection through the boundary nodes, allowing boundary n
to be handled in the same manner as interior nodes. For the diffusion terms a Neur
outflow boundary is applied with zero gradient, achieved by setting the boundary inte
in Eq. (27) to zero.

LIMITER FUNCTIONS

Minmod, van Albada [15], Superbee, apd16] symmetric limiters are utilized for FV
(Eq. (7)) and FS (Eq. (20)) in the form of symmetric averaging functidhsielated to the
limiter as

w(p) = M(p.) = M(@. p) = pw<q).
q p
The van Albada averaging function is

M — (pPq+£3)(p+ Q)
PP 2422

where the small parametef varies likeAx? (see [15, 17] for discussion on scaliagand
serves to reduce the limiting in smooth regions.

The averaging function for the limiter, of which the Minmod ¢ = 1) and Superbee
(y =2) are special cases, is

0 pg=<0
Yp yIpl < q]
M(p,a) =4 9 if [pl <1al <ylpl. (30)
p lal < Ipl < ylal
Yq vlal < [pl
TIMESTEP

Both schemes are formulated as Gauss—Seidel time-relaxation algorithms. The r
updates for the discrete system can be formed as a sum of contributions from all node

Ut = cup =qGui+ > _cju;. (31)
j

j#

For positivity [18] each of the coefficients;, in Eq. (31) must be non-negative.

Advective Timestep Restriction

In the FV context the nodal update (Eq. (31)) can be rearranged into the form of Eq.
H S

: T

T

S (-

c — Dy +§chu,-. (32)
j#i
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For the upwind, edge-based algorithm considered here, @chc; will be related to a
positive-definite coefficient equal to zero for outflowing faces and related to the wavesp
for inflowing faces, yielding the restriction> 0 on the timestep. The remaining term can
be expressed as

S

@ -D=- > ¢ (33)

T .

k about

where thecy coefficientsk in this case referring to nodes neighbor-1 with nodare also
positive-definite, either zero for inflowing faces or related to the wavespeed for outflo
ing faces. Rearranging and imposing the positivity constraint,0, yields the timestep
restriction

T
-2 Y «=6G2=0. (34)
S k about
The timestep is then obtained,
S
T<—— . (35)
Zkabouﬁ Ck
For FS, the nodal updates are assembled from Eq. (23) as
S (e
= CHEEDSETUREINE (36)
j#

In this case the; coefficients are formed as contributions from the fluctuations in th
triangles to both the left and the right of mesh edigeThe positivity restriction on is
found to have a similar form as for finite volume (Eq. (35)),

S
> i Ci
Local timestepping based on positivity is shown to yield stable, yet non-converging,
lutions in some second-order cases (see Results). Robust convergence is obtained by
the first-orderc’s in Eq. (35) and (37), even with second-order-accurate spatial discretiz
tions. This is analogous to the common practice in the FV community of using a first-orc
left-hand-side Jacobian discretization in an implicit scheme.

T=

37)

Diffusive Timestep Restriction

Unfortunately, the finite element formulation for the diffusive terms (Eq. (28)) cann
be guaranteed to preserve local positivity on obtuse triangles (see Barth [1]). Conside
only the contributions from the current node, the coefficient for the diffusion term can
written as

2
Ut = uf (1— éz %) , (38)

T

where the appropriate edge lengthis the side of the element opposite the current node
The resulting timestep restriction is,

S
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In a similar manner the timestep restriction for Eq. (10) is

S

T =" —-
= 31 3vAl2/4Q

(40)

RESULTS

Linear Advection

The linear advection equation is obtained from Eq. (1) by settiag0 and F=u,
yielding

U + V- (u) = 0. (41)

An analytically non-divergent advection velocity is considered, such fhat = 0.
Equation (41) can then be written

Ut + - VU = 0. (42)

Uniform advection. Uniform advection of the Heaviside function-att5’, A= 1, -1,

on a cut-Cartesian mesh is shown for second-order FS and FV in Figs. 2 and 3, respect
The mesh is shown as the dashed background, and equally spaced contours vary on
the minimum and maximum solution values. The spread of the contour lines with sp:
evolution is indicative of the amount of dissipation introduced into the solution by t
discretization of the convective terms. FS represents a significant reduction in nume
diffusion versus the corresponding FV scheme, with both results employing the Minr

limiter.

A=(1,-1)

Contour
spacing:
- 0.05-0.95
0.1 increments

FIG. 2. Second-order fluctuation splitting, uniform advection.



362 WOOD AND KLEB

A=(1,-1)

... Contour
" spacing:
. 0.05-0.95
= 0.1 increments

FIG. 3. Second-order finite volume, uniform advection.

However, the “zero cross diffusion” results of Fig. 2 with FS are misleading. In Fig. 4 tl
advection velocity has been rotated counterclockwise ByfQhe same grid. Clearly, the
artificial dissipation introduced by the FS scheme has been increased. The correspor
FV solution, not shown (see [19]), also has an increase in artificial dissipation product
versus the favorably aligned mesh of Fig. 3.

r=(1,1)

“.. - Contour

' spacing:
0.05-0.95

~ 0.1 increments

FIG. 4. Second-order fluctuation splitting, uniform advection.
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A=(1,1)

. Contour

* spacing:

. 0.05-0.95
0.1 increments

FIG. 5. Second-order fluctuation splitting with compressive limiter.

Employing the compressive Superbee limiter with the FS scheme yields the results st
in Fig. 5. In this case the discontinuity is confined to a 2—3 cell stencil and does not g
in space. Applying the Superbee limiter to FV cannot eliminate all artificial dissipation
this case, as is possible with FS. The FV results, not shown (see [19]), corresponding t
FS results of Fig. 5 show a continual broadening of the discontinuity, eventually react
a width of four cells by the outflow boundary.

However, whileitis possible to use the Superbee limiter with FS for this case, compres
limiters can be unstable for certain grid orientations. For example, no degree of compre:
is stable for the case of Fig. 2. This instability is due to a violation global positivity,
discussed by Sidilkover and Roe [3].

The effect of using a non-uniform unstructured grid is investigated in Figs. 6 and 7.
unstructured grid in this case was generated usiegIN[20, 21]. The FS solution exhibits
less dissipation, but is not as smooth as the FV solution. While the FS scheme pres
contact discontinuities over larger spatial ranges than the FV scheme, FS does not a
to degenerate gracefully with regard to extreme coarsening of the unstructured mes
this test case. This behavior could have negative implications for applications emplo
multigrid convergence acceleration.

Circular advection. Circular advection is achieved by settﬁng: (y, —x) andis applied
on an unstructured mesh. The input profile for this case consists of both a top-hat fun
and a decaying sine wave, allowing comparisons between the schemes for both
discontinuities and smooth gradients. The input profile is

(e*sin2rx))2 —-05<x<0

0 —-06<x<-05
0.4 —-08<x< —06"
0 -1<x<-08

uix, 0) =
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A=(1,1)

.. Contour
spacing:
. 0.05-0.95
0.1 increments

FIG. 6. Fluctuation splitting on unstructured mesh.

Results for this case are displayed in Fig. 8 for FS and Fig. 9 for FV, both using t
Minmod limiter. FS performs significantly better at preserving the top-hat distributio
FS also does a better job of maintaining the minimum and maximum values of the s
distribution, though both schemes do well on the smooth gradient portion of the sine we

A=(1,1)

.. Contour

" spacing:
0.05-0.95

. 0.1increments

FIG. 7. Finite volume on unstructured mesh.
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Y A=(y,-x)
E Contour
0.5 spacing:
0.025-0.375
F 0.05 increments
u=0 .-
. | ‘
04 -0.5 . .
U=0 U=04 U=0  U=(e * sin(2nx))

FIG. 8. Fluctuation splitting on unstructured mesh, circular advection.

Non-linear Advection

The two-dimensional inviscid Burgers equation, a non-linear advection equation, is

365

tained from Eq. (1) by settin@ = (u?/2, u) with v=0. In non-conservative form the
equation is written

0.5

Uy +Uuy +uy =0.

)\.=(y,'X)

- Contour
spacing:
.. 0.025-0.375

- 0.05 increments

‘- .5 2 20
U=04 U=0 y U=(e™sin(2m))

Finite volume on unstructured mesh, circular advection.
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Contour
spacing:

0.1 increments

-0.
U=-2x-1 X

FIG. 10. Fluctuation splitting, Burgers equation.

A coalescing shock problem is considered, with an anti-symmetric input profile,

U(—l, y) = U(O, y) =0
ux,0=-2x-1 onx = (-1, 0).

The exact solution to this problem contains symmetric expansion fans on the sides
a compression fan at the inflow that coalesces into a vertical shogck g = (—%, %).
The fan and shock structures are features that have direct counterparts in compressibl
dynamics.

The first mesh is cut-Cartesian containing>286 nodes. The FS and FV solutions, both
using the Minmod limiter, are presented in Figs. 10 and 11, respectively. Both algorith
exhibit the same grid dependence on the amount of artificial dissipation as seen before,
the left-half solutions having more diffusion than the right-half solutions due to the gr
orientation. Both methods perform the same in the compression-fan region, coalescing
a shock to within the accuracy of the input-profile discretization. The shock is more shar
defined by FS than by FV. Figure 10 shows the correct shock speed, with nearly the el
gradient captured in one cell thickness. In contrast, Fig. 11 shows a slightly incorrect sh
speed when using FV, as the shock progresses to the left beyond the coalescence point
though the discretization is conservative. The incorrect shock speed results from a r
symmetric distribution of the dependent variable to the left and right of the shock, cau:
by the excessive artificial diffusion generated on the grid-misaligned (left-hand) side.

Contours of the absolute value of the error are presented in Figs. 12 and 13. Errors f
both computed solutions show a lack of symmetry, again reflecting the grid dependenc
the artificial diffusion terms. The error levels from FS are less than from FV. The sho
curvature in the FV solution at the coalescing point is clearly visible in Fig. 13, resulting
significant downstream errors in the shock location as compared with the FS errors.
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1~
Y
L Contour
spacing:
0.5 - : 0.1 increments
u=o u=0
o N

-0.
U=-2x-1 X

FIG. 11. Finite volume, Burgers equation.

This problem was repeated on a 225 mesh with symmetric diagonal cuts, favorabl
aligned with the advection directions (results presented in [19]). Both schemes produc
correct shock speed with symmetric error distributions on the symmetric mesh, with
same trend that FS has lower error levels than FV.

Contour
spacing:

0.1 increments

FIG. 12. Fluctuation splitting, Burgers equation, absolute error.



368 WOOD AND KLEB

Contour
spacing:
0-1

0.1 increments

FIG. 13. Finite volume, Burgers equation, absolute error.

The final mesh for this case is a non-uniform unstructured triangulation containing &
nodes and 1617 cells. The nodes are clustered to the outflow boundary, with a bias tow
the left-hand side. The FS solution is presented in Fig. 14, showing very accurate and ¢
shock resolution and good symmetry in the solution contours despite the mesh-cluste

o : ~\.. " Contour
@\\» N AR .| spacing:

0.1 increments

- 0.5

>-0.5
U=-2x-1

FIG. 14. Fluctuation splitting, Burgers equation, unstructured mesh.
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-1 -0.5

<
T T
Sl e o

Contour
spacing:

0.1 increments

0.5 LD w flff 05

-1 -0.5
U=-2x-1

FIG. 15. Finite volume, Burgers equation, unstructured mesh.

bias. In contrast, the FV solution in Fig. 15 has a more diffuse shock and again an inco
shock speed, with the outflow shock offset to the left ef — % In general, the FV solution
is somewhat less symmetric than the FS solution.

Linear Diffusion

ChoosingF =0, the diffusive heat-conduction equation is obtained from Eq. (1),
Ui = V- (vVu).

The test problem, a steady-state boundary value problem on a unit square, is taken
Tomaich [4]. The Dirichlet boundary values are

u(-1y)=0, u(0 y) =sin(ry) (43)
uix,0 =0, u(x,1) = —sin(x). (44)

The analytical solution or=[—1, 0], y=]0, 1] is

ux,y) = [sinh(z (x 4+ 1)) sin(ry) + sinh(zry) sin(z (X + 1))].

sinhx

Both diffusion discretizations, Egs. (10) and (28), are compared on a 438-node uns
tured mesh. Figures 16 and 17 plot the absolute value of the error in the converged solt
using Egs. (10) and (28), respectively.

The treatment of Eq. (28) is clearly more accurate for this case, and is used to discr
the diffusion terms for both FV and FS in the following section. The average-gradi
results in Fig. 16 appear to exhibit a decoupling mode, similar to odd/even decoupling
structured meshes.
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Contour
7 spacing:

| 0-0.02
0.002 incr.

0.5

S T Contour
T R S 0.002 incr.
os _ i

o5

FIG. 17. Pure-diffusion problem error, diffusion terms from Eq. (28).
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TABLE 1
Grids and Solution Times for Advection—Diffusion Problem

CPU seconds

Mesh Nodes FS FV
A 134 <1 <1
B 495 1 1
C 1,928 5 8
D 7,529 64 145
E 28,915 760 1880

Linear Advection—Diffusion

The final test case is the linear advection—diffusion problem of Smith and Hutton [
The flux function isF = Au, with

A= y(1—x?), —2x(1 — y?)).

The streamlines for this problem, while not exactly circular, are similar in orientation
those for the circular advection problem, with the domain as a unit square in the se
quadrant. The inflow profile is

u(x, 0) = 1+ tanh(20x + 10).

The diffusion coefficient is chosen to be a constant, 10~2. No closed-form solution is
known to the authors for this problem. A small diffusion coefficient is chosen to min
behavior that might be expected in a high-Reynolds-number shear flow. Another ana
is to the diffusion of species in multi-component gas dynamics.

A sequence of five non-uniform unstructured meshes is considered. The meshes
no preferred clustering or stretching and have nominal node-spacings of 0.1, 0.05, 0
0.0125, and 0.00625, labeled as Meshes A, B, C, D, and E, respectively. The numb
nodes for each mesh, along with the solution times for both FS and FV on a 195-MHz
R10000 CPU, are listed in Table 1.

L,-Norms of the artificial and physical viscosities computed using both FS and FV
presented for each mesh in Table 2. Notice that the norm of the artificial dissipation

TABLE 2
L,-Norms (x 10P) of Artificial and Physical Viscosities for Advection-Diffusion Problem

FS Fv
112 llpoll2 @Il lpoll2
(art.) (phys.) Mesh (art.) (phys.)
1274 215 A 1918 190
597 265 B 640 176
192 161 Cc 144 119
54 76 D 46 66
13 36 E 18 36
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1.75 |- ———  F§,v=10"
: -~~~ FS,v=0
r Inflow profile
1.5 i
U L
1.25 i
"
0.75 -
05 [
0.25 -
I T I P -
8.35 0.4 0.45 0.5 0.55 0.6 0.65
Y

FIG. 18. Fluctuation splitting profiles on finest mesh, advection—diffusion problem.

both FV and FS is lower than the norm of the physical dissipation for Meshes D and
Since the algorithms select only the larger of the physical or artificial dissipation (Eq. (2¢
Table 2 suggests that both schemes are grid resolved by Mesh D. However, the norm o
physical dissipation is smaller for FV than FS on each mesh A-D. The physical viscosit
driven by the solution curvature, suggesting FS maintains the solution profile sharper t
FV on the coarser meshes. To verify this interpretation, a comparison of outflow profi
follows.

Further evidence of a grid-resolved FS solution is seen in Figs. 18 and 19. The
solution on Mesh E at the outflow boundary is presented along with the inflow prof
and the corresponding pure-advection=0) FS solution in Fig. 18. The pure-advection
solution is seen to replicate the inflow profile, with a clear separation from the diffuse
v =103, solution. Plotting only the FS results with respect to grid refinement, Fig. 1
shows grid convergence of the outflow profile by Mesh C.

The relative accuracy of FS and FV are compared in Fig. 20, where the outflow soluti
from FS and FV are plotted for Meshes C and E. Taking the grid-converged FS Mes|
solution to be the true solution, it is clear that FS reaches the grid converged solution ¢
coarser mesh than FV.

Computational efficiencies of the two algorithms are compared in Fig. 21, where t
L,-norm of the residual is plotted versus CPU time for the fine-mesh FS and FV solutio
along with the FS convergence history on Mesh D. The Mesh-E FS solution converge
760s. The corresponding FV solution takes 2.5 times longer than FS, due, in part, to the |
to reconstruct gradient information at each node with FV for second-order spatial accur:
However, considering the solution time to reach a given accuracy, it is more reasonabl
compare the FS solution time on Mesh D to the finest-mesh FV solution. The FS Mesl
solution took only 64 s, a factor of 29 times less than FV on Mesh E, and still shows be
accuracy than the fine-mesh FV solution.
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FIG. 19. Fluctuation splitting grid convergence, advection—diffusion problem.

An even greater speedup is seen with FS in conjunction with the van Albada limiter, wt
now the Mesh-B solution overplots the curve from the finest grid, shown in Fig. 22. 1
corresponding FV result using the van Albada limiter on Mesh B is included and clearly f
short of the FS accuracy. The FV case was repeated with the highly compressive Sup
limiter with little improvement in accuracy. The solution time for FS on Mesh B is abo

1 s, yielding a speedup factor of 2—3 orders of magnitude over FV.
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FIG. 20. Fluctuation splitting and finite volume for advection—diffusion problem.
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FIG. 21. Convergence histories for advection—diffusion problem.

The final set of results addresses convergence issues while pushing the positivity lin
Figure 23 compares two convergence histories for the second-order FS on Mesh B.
non-converging, though stable, convergence history is the result of using strict positivity
guments to set the timestep (Eq. (37)). The resulting solution is bounded and approxime
correct but oscillatory. Limiter “ringing” is considered to be a contributor to this behavic

2 e
1.75 - FS, minmod, mesh E
- FS, van Albada, mesh B
C FV, van Albada, mesh B
1.5 —
u
1.25 |-
.
075
05
0.25 -
- L T ! L T L
835 0.4 0.45 0.5 0.55 0.6 0.65

FIG. 22. Advection—diffusion results using van Albada limiter.
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FIG. 23. Convergence rates using first- and second-order positivity coefficients.

and the higher-order discretization for the implicit matrix could be reducing the diago
dominance, and hence stability, of the Gauss—Seidel iteration.

Full convergence is achieved by using the first-order positivity coefficients for the times
which are not dependent on the limiters, in conjunction with the second-order spatial
cretization. The resulting local timesteps will not be as large as true second-order posit
would allow, but appear to be more robust.

SUMMARY OF RESULTS

Fluctuation splitting and finite volume schemes are compared in detail as applied to s
advection, diffusion, and advection—diffusion problems. The specific test cases are cho:s
illustrate features present in compressible gas dynamics, including expansion/compre
fans and shocks for inviscid flow and high-Reynolds-number shear for viscous flows.
extensions of these schemes to systems is not covered, but is an active research are:

For the scalar equations, the fluctuation splitting scheme is seen to introduce less arti
dissipation while treating advection terms, allowing for more accurate resolution of wee
dissipative advection—diffusion problems. The ability to resolve solutions to these probl
on coarser meshes makes the fluctuation splitting scheme the clear choice over finite vo

Linear advection test problems are utilized to investigate the dependence of artificial
fusion production on grid orientation. Both fluctuation splitting and finite volume are sho
to exhibit grid dependencies, but fluctuation splitting produces less artificial dissipatior
all grids considered.

A non-linear coalescing shock problem further explores grid dependencies, as case
constructed that result in incorrect shock speeds for finite volume. Fluctuation split
shows correct shock speeds for all grids and provides tighter shock capturing than 1
volume.
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An advection—diffusion problem with small physical dissipation (diffusion coefficient c

1073) is considered where the reduction in artificial dissipation with fluctuation splittin

re

sults in a significant accuracy improvement over finite volume. Convergence times

compared, showing a speedup of 2.5 for fluctuation splitting over finite volume on identi

gar

ids, using a point Gauss—Seidel relaxation. However, a grid convergence study sh

fluctuation splitting produces better resolution of the solution on a coarser mesh than fi
volume does on a finer mesh, resulting is a speedup of 29 for fluctuation splitting over fir
volume to generate a solution of comparable accuracy.
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