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The diffusive characteristics of two upwind schemes, multi-dimensional fluctu-
ation splitting and locally one-dimensional finite volume, are compared for scalar
advection–diffusion problems. Algorithms for the two schemes are developed for
node-based data representation on median-dual meshes associated with unstructured
triangulations in two spatial dimensions. Four model equations are considered: lin-
ear advection, non-linear advection, diffusion, and advection–diffusion, with cases
chosen to mimic features present in compressible gas dynamics. Modular coding is
employed to isolate the effects of the two approaches for upwind flux evaluation,
allowing for head-to-head accuracy and efficiency comparisons. Both the stability of
compressive limiters and the amount of artificial diffusion generated by the schemes
are found to be grid-orientation dependent, with the fluctuation splitting scheme
producing less artificial diffusion than the finite volume scheme. Convergence rates
are compared for an advection–diffusion problem, with a speedup of 2.5 seen for
fluctuation splitting versus finite volume when solved on the same mesh. However,
accurate solutions to problems with small diffusion coefficients can be achieved on
coarser meshes using fluctuation splitting rather than finite volume, so that when
comparing convergence rates to reach a given accuracy, fluctuation splitting shows
a speedup of 29 over finite volume for the test problem.c© 1999 Academic Press
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INTRODUCTION

Upwind discretizations for advection equations typically introduce artificial numerical
dissipation into the solution. When combined advection–diffusion problems are considered,
this dissipation introduced in the discretization of the advection terms should be less than the
true physical diffusion. Here, the diffusive charactersitics of upwind advection schemes are
investigated on unstructured triangulations, and their performance in resolving solutions to
combined advection–diffusion problems, with small diffusion coefficients, is quantitatively
assessed.
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Two node-based, median-dual methods for modeling convective fluxes are considered.
The first is a traditional locally one-dimensional approximate Riemann solver finite volume
(FV) scheme [1]. Locally one-dimensional schemes applied on multidimensional domains
are known to introduce excess dissipation when discontinuities are not aligned with the
mesh [2].

The second method is the narrow non-linear [3] fluctuation splitting (FS) scheme, also
referred to in the literature as a residual distribution scheme. FS has a more compact stencil
than FV for second-order formulations and exhibits zero cross diffusion in a grid-aligned
condition. Both of these attributes should lead to less artificial dissipation as compared with
FV.

The sensitivity of FS and FV to grid orientation and resulting production of cross diffusion
is investigated in the present report. The use of compressive limiter functions is also tested
with both algorithms. Local timesteps based on positivity arguments are implemented for
both first- and second-order discretizations of the implicit matrix.

Formulation of FS schemes for diffusion problems is a recent research area [4, 5]. The
present study seeks to quantify the relative merits of using a low-diffusion advection operator
to resolve advection–diffusion problems with small diffusion coefficients. Lessons learned
on these problems will guide the development of computer codes for solving compressible
viscous fluid dynamic problems. A similar approach for central difference schemes with
explicit numerical dissipation has recently been taken by Efraimsson [6].

The model problems considered are linear advection, non-linear advection, linear dif-
fusion, and linear advection–diffusion. These problems are intended to mimic behavior
expected from applications to gas dynamics such as supersonic, inviscid, perfect-gas flow
(non-linear advection), and high-Reynolds-number shear flows (advection–diffusion).

GOVERNING EQUATIONS

The non-linear advection–diffusion equation,

ut +∇ · EF = ∇ · (ν∇u), (1)

is cast as a hyperbolic conservation law, to which steady-state solutions are sought. Here
u is the dependent variable,EF = EF(x, y, u) is the convective flux function, andν is the
diffusion coefficient.

Finite Volume

In FV form, using the divergence theorem Eq. (1) becomes∫
Ä

ut dÄ = −
∮

0

( EF − ν∇u) · n̂ d0, (2)

whereÄ is the median dual about nodei , 0 is the boundary ofÄ, andn̂ is the outward
unit normal to control cell. Using mass lumping to the nodes, similar to an explicit finite
element treatment [7], the temporal evolution is evaluated on a time-invariant mesh as∫

Ä

ut dÄ = Si
∂ui

∂t
→ Si

τ

(
ut+τ

i − ut
i

)
, (3)

whereSi is the median-dual area about nodei andτ is the time step.
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The discretization of the convective flux,EF , is constructed following Barth’s [1] imple-
mentation of the upwind, locally one-dimensional, approximate Riemann solver of Roe
[8], ∮

0

EF · n̂ d0→
∑
faces

[
1

2
( EF in + EFout) · n̂−8

]
10, (4)

where the artificial dissipation,8, provides the upwinding,

8 = 1

2
|Ãn̂x + B̃n̂y|(uout− uin), (5)

with n̂= n̂xı̂ + n̂y̂ (ı̂ and̂ are the Cartesian unit vectors). “Out” and “in” refer to states
on the outside and inside ofÄ at the face.A and B are the flux Jacobians in theı̂ and ̂

directions, respectively,

A = ∂F (1)

∂u
, B = ∂F (2)

∂u
, (6)

and (Ã, B̃) represent their conservative linearizations at the cell face [8].
Piecewise linear reconstruction from the nodal unknowns to the cell faces as

uface= ui + ψ∇u · Er (7)

provides second-order spatial accuracy in smoothly varying regions of the solution.Er is the
position vector from the node to the face. Median-dual gradients of the dependent variable,
5u, are obtained from the unweighted least squares procedure outlined by Barth. Following
Bruner and Walters [9], the limiter function,ψ , is supplied an argument equal to half the
argument Barth uses, namely,

ψ = ψ

(
umin/max− ui

2(∇u · Er )min/max

)
, (8)

whereumin/max is the minimum (resp. maximum) ofui and all distance-one neighbors. The
more restrictive constraint from using either the maximum or minimum is used to set the
limiter value.

In casting the limiter argument in this form, Bruner equates the Barth limiter with
Superbee, for a limiter argument less than or equal to one. The Barth limiting is non-
symmetric, taking the form

ψ

(
p

q

)
=


0 p

q ≤ 0

2 p
q if 0 <

p
q < 1

2

1 p
q ≥ 1

2

(9)

for the limiter as cast in Eq. (8). In Eq. (9),p andq are dummy arguments for the limiter.
Two methods for evaluating the physical diffusion term are incorporated into FV. The

more compact of the two, the finite element discretization, is discussed in the following
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section. The less compact diffusion formula is obtained by discretizing the last term of
Eq. (2), in a manner similar to Eq. (4),∮

0

ν∇u · n̂ d0→
∑
faces

ν̄

2
(∇uin +∇uout) · n̂10. (10)

The diffusion coefficient is averaged over the length of the face. The gradients from
Eq. (7) are not limited before averaging at the control-volume faces in Eq. (10). Discretizing
the diffusion terms in this manner would lead to a five-point stencil on a one-dimensional
structured mesh.

Fluctuation Splitting

The NNL FS scheme is presented as a slight rederivation of the work of Sidilkover and
Roe [3]. The current interpretation is as a volume integral over triangular elements, without
recourse to the divergence theorem. The discretized equations, however, are identical.

Integrating Eq. (1) over an element, whereÄ is now the area of the triangular element,∫
Ä

ut dÄ = −
∫

Ä

∇ · EF dÄ+
∫

Ä

∇ · (ν∇u) dÄ. (11)

For linear variation of the dependent variable over the element, the temporal evolution is∫
Ä

ut dÄ = Äūt = Ä

3

(
u1t + u2t + u3t

)
, (12)

whereu1, u2, andu3 correspond to the three nodes defining elementÄ.
Defining local curvilinear coordinates,ξ andη, parallel to sides12 and23, respectively

(Fig. 1), the divergence of the convective flux can be written

∇ · EF = F (1)
x + F (2)

y =
1

J−1
(n̂2 · EF ξ − n̂1 · EFη), (13)

FIG. 1. Fluctuation splitting element nomenclature.
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where J−1 is the inverse Jacobian of the coordinate transformation. Defining the scaled
inward normal,n = −hn̂, whereh is a mesh edge length, the divergence (Eq. (13)) becomes

∇ · EF = 1

2Ä
(−h12n2 · EF ξ + h23n1 · EFη). (14)

A feature of Sidilkover’s scheme is that the choice is arbitrary for which two of the three
sides of the triangle to use forξ andη, provided they follow a right-hand rule for axes. Most
other FS implementations [10–12] require the identification of inflow and outflow edges
to set the local coordinates for each cell. Preliminary numerical tests during the present
study varied the choice of sides for (ξ, η), and while the transient behavior differed, the
converged steady-state solutions were identical. For all results presented here the choice
for the (ξ, η) vertex is chosen arbitrarily to be the second node of the triangle as defined by
the grid generator.

If EF is linear or quadratic inu, then for a linear variation ofu over the element,∫
Ä

∇ · EF dÄ = α121u+ β132u, (15)

where the difference operator is defined as121u = u2− u1, and the advection speeds are

α = −1

2

(
n2x Ã+ n2y B̃

)
, β = 1

2

(
n1x Ã+ n1y B̃), (16)

whereÃ and B̃ are now conservative linearizations over the triangular element [13].
The advective fluctuation,φ, is defined as

φ = −
∫

Ä

∇ · EF dÄ. (17)

The fluctuation is split according to

φ = φξ + φη, (18)

where

φξ = −α121u, φη = −β132u. (19)

Following Sidilkover [14] the fluctuation is limited to achieve a second-order scheme.
The limited fluctuations are given by

φξ∗ = φξ+φηψ(Q) = φξ

(
1−ψ(Q)

Q

)
, φη∗ = φη−φηψ(Q) = φη(1−ψ(Q)), (20)

with

Q = −φξ

φη
. (21)

Upwinding is achieved through the introduction of artificial dissipation terms,

φ̄
ξ = sign(α)φξ∗ , φ̄

η = sign(β)φη∗ . (22)
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Combining Eq. (12) with a distribution scheme for Eq. (17) and summing over all ele-
ments, the contributions to nodal time derivatives can be written in the form

S1u1t ←
1

2
(φξ∗ − φ̄

ξ
)+ COE

S2u2t ←
1

2
(φξ∗ + φ̄

ξ
)+ 1

2
(φη∗ − φ̄

η
)+ COE (23)

S3u3t ←
1

2
(φη∗ + φ̄

η
)+ COE,

where COE stands for contributions from other elements containing these nodes. The nodal
distribution formula can also be written in a compact form,

Si uit ←
1

4
[i (3− i )(φξ∗ + (−1)i φ̄

ξ
)+ (−4+ 5i − i 2)(φη∗ − (−1)i φ̄

η
)] + COE. (24)

A finite element treatment, similar to that of Tomaich [4], is employed to obtain the
diffusive fluctuation,φv, as

φv =
∫

Ä

∇ · (ν∇u) dÄ. (25)

Assuming piecewise-linear data and an element-averaged diffusion coefficient leads to a
diffusive fluctuation of zero for the triangular element. Introducing the linear nodal shape
functionsϑi , such that

∑3
i=1 ϑi = 1, the elemental diffusive fluctuation can be expressed

φv =
∑3

i=1 φvi = 0, where

φvi =
∫

Ä

ϑi∇ · (ν∇u) dÄ. (26)

Integrating by parts,

φvi =
∮

0

ϑi ν∇u · n̂ d0 −
∫

Ä

ν∇u · ∇ϑi dÄ. (27)

The boundary integral in Eq. (27) will cancel upon summing contributions for interior
nodes. The remaining volume integral can be evaluated analytically,

φvi = −
ν̄

2
∇u · ni+1 = − ν̄

4Ä

3∑
j=1

u j n j+1 · ni+1. (28)

Distributing this diffusive fluctuation to the nodes and keeping only the larger of the physical
or artificial dissipation leads to the update formula,

S1u1t ←
φξ∗

2
+max

(
− φ̄ξ

2
, φv1

)
+ COE

S2u2t ←
φξ∗ + φη∗

2
+max

(
(φ̄ξ − φ̄η)

2
, φv2

)
+ COE (29)

S3u3t ←
φη∗

2
+max

(
φ̄η

2
, φv3

)
+ COE.
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BOUNDARY CONDITIONS

Explicit Dirichlet inflow boundary conditions are employed. Advective outflow bound-
aries are treated for free convection through the boundary nodes, allowing boundary nodes
to be handled in the same manner as interior nodes. For the diffusion terms a Neumann
outflow boundary is applied with zero gradient, achieved by setting the boundary integral
in Eq. (27) to zero.

LIMITER FUNCTIONS

Minmod, van Albada [15], Superbee, andγ [16] symmetric limiters are utilized for FV
(Eq. (7)) and FS (Eq. (20)) in the form of symmetric averaging functions,M , related to the
limiter as

qψ

(
p

q

)
= M(p, q) = M(q, p) = pψ

(
q

p

)
.

The van Albada averaging function is

M = (pq+ ε2)(p+ q)

p2+ q2+ 2ε2
,

where the small parameterε2 varies like1x3 (see [15, 17] for discussion on scalingε) and
serves to reduce the limiting in smooth regions.

The averaging function for theγ limiter, of which the Minmod (γ = 1) and Superbee
(γ = 2) are special cases, is

M(p, q) =



0 pq ≤ 0

γ p γ |p| ≤ |q|
q if |p| ≤ |q| ≤ γ |p|.
p |q| ≤ |p| ≤ γ |q|
γ q γ |q| ≤ |p|

(30)

TIMESTEP

Both schemes are formulated as Gauss–Seidel time-relaxation algorithms. The nodal
updates for the discrete system can be formed as a sum of contributions from all nodes:

ut+τ
i =

∑
j

cj u j = ci ui +
∑
j 6=i

cj u j . (31)

For positivity [18] each of the coefficients,cj , in Eq. (31) must be non-negative.

Advective Timestep Restriction

In the FV context the nodal update (Eq. (31)) can be rearranged into the form of Eq. (3),

Si

τ

(
ut+τ

i − ut
i

) = Si

τ
(ci − 1)ui + Si

τ

∑
j 6=i

cj u j . (32)
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For the upwind, edge-based algorithm considered here, each(Si /τ)cj will be related to a
positive-definite coefficient equal to zero for outflowing faces and related to the wavespeed
for inflowing faces, yielding the restrictionτ ≥ 0 on the timestep. The remaining term can
be expressed as

Si

τ
(ci − 1) = −

∑
k abouti

ck, (33)

where theck coefficients,k in this case referring to nodes neighbor-1 with nodei , are also
positive-definite, either zero for inflowing faces or related to the wavespeed for outflow-
ing faces. Rearranging and imposing the positivity constraint,ci ≥ 0, yields the timestep
restriction

1− τ

Si

∑
k abouti

ck = ci ≥ 0. (34)

The timestep is then obtained,

τ ≤ Si∑
k abouti ck

. (35)

For FS, the nodal updates are assembled from Eq. (23) as

Si

τ

(
ut+τ

i − ut
i

) =∑
j 6=i

cj (u j − ui ). (36)

In this case thecj coefficients are formed as contributions from the fluctuations in the
triangles to both the left and the right of mesh edgeı . The positivity restriction onτ is
found to have a similar form as for finite volume (Eq. (35)),

τ ≤ Si∑
j 6=i cj

. (37)

Local timestepping based on positivity is shown to yield stable, yet non-converging, so-
lutions in some second-order cases (see Results). Robust convergence is obtained by using
the first-orderc’s in Eq. (35) and (37), even with second-order-accurate spatial discretiza-
tions. This is analogous to the common practice in the FV community of using a first-order
left-hand-side Jacobian discretization in an implicit scheme.

Diffusive Timestep Restriction

Unfortunately, the finite element formulation for the diffusive terms (Eq. (28)) cannot
be guaranteed to preserve local positivity on obtuse triangles (see Barth [1]). Considering
only the contributions from the current node, the coefficient for the diffusion term can be
written as

ut+τ
i = ut

i

(
1− τ

Si

∑
T

ν`2

4Ä

)
, (38)

where the appropriate edge length,`, is the side of the element opposite the current node.
The resulting timestep restriction is,

τ ≤ Si∑
T ν`2/4Ä

. (39)
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In a similar manner the timestep restriction for Eq. (10) is

τ ≤ Si∑
T 3ν102/4Ä

. (40)

RESULTS

Linear Advection

The linear advection equation is obtained from Eq. (1) by settingν= 0 and EF = Eλu,
yielding

ut +∇ · (Eλu) = 0. (41)

An analytically non-divergent advection velocity is considered, such that∇ · Eλ= 0.
Equation (41) can then be written

ut + Eλ · ∇u = 0. (42)

Uniform advection. Uniform advection of the Heaviside function at−45◦, Eλ= (1,−1),
on a cut-Cartesian mesh is shown for second-order FS and FV in Figs. 2 and 3, respectively.
The mesh is shown as the dashed background, and equally spaced contours vary on [0, 1],
the minimum and maximum solution values. The spread of the contour lines with spatial
evolution is indicative of the amount of dissipation introduced into the solution by the
discretization of the convective terms. FS represents a significant reduction in numerical
diffusion versus the corresponding FV scheme, with both results employing the Minmod
limiter.

FIG. 2. Second-order fluctuation splitting, uniform advection.
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FIG. 3. Second-order finite volume, uniform advection.

However, the “zero cross diffusion” results of Fig. 2 with FS are misleading. In Fig. 4 the
advection velocity has been rotated counterclockwise by 90◦ on the same grid. Clearly, the
artificial dissipation introduced by the FS scheme has been increased. The corresponding
FV solution, not shown (see [19]), also has an increase in artificial dissipation production
versus the favorably aligned mesh of Fig. 3.

FIG. 4. Second-order fluctuation splitting, uniform advection.



DIFFUSION CHARACTERISTICS OF ADVECTION SCHEMES 363

FIG. 5. Second-order fluctuation splitting with compressive limiter.

Employing the compressive Superbee limiter with the FS scheme yields the results shown
in Fig. 5. In this case the discontinuity is confined to a 2–3 cell stencil and does not grow
in space. Applying the Superbee limiter to FV cannot eliminate all artificial dissipation for
this case, as is possible with FS. The FV results, not shown (see [19]), corresponding to the
FS results of Fig. 5 show a continual broadening of the discontinuity, eventually reaching
a width of four cells by the outflow boundary.

However, while it is possible to use the Superbee limiter with FS for this case, compressive
limiters can be unstable for certain grid orientations. For example, no degree of compression
is stable for the case of Fig. 2. This instability is due to a violation global positivity, as
discussed by Sidilkover and Roe [3].

The effect of using a non-uniform unstructured grid is investigated in Figs. 6 and 7. The
unstructured grid in this case was generated using VGRID [20, 21]. The FS solution exhibits
less dissipation, but is not as smooth as the FV solution. While the FS scheme preserves
contact discontinuities over larger spatial ranges than the FV scheme, FS does not appear
to degenerate gracefully with regard to extreme coarsening of the unstructured mesh for
this test case. This behavior could have negative implications for applications employing
multigrid convergence acceleration.

Circular advection. Circular advection is achieved by settingEλ= (y,−x) and is applied
on an unstructured mesh. The input profile for this case consists of both a top-hat function
and a decaying sine wave, allowing comparisons between the schemes for both sharp
discontinuities and smooth gradients. The input profile is

u(x, 0) =


(e2x sin(2πx))2 −0.5≤ x < 0
0 −0.6≤ x < −0.5
0.4 −0.8≤ x < −0.6
0 −1≤ x < −0.8

.
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FIG. 6. Fluctuation splitting on unstructured mesh.

Results for this case are displayed in Fig. 8 for FS and Fig. 9 for FV, both using the
Minmod limiter. FS performs significantly better at preserving the top-hat distribution.
FS also does a better job of maintaining the minimum and maximum values of the sine
distribution, though both schemes do well on the smooth gradient portion of the sine wave.

FIG. 7. Finite volume on unstructured mesh.
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FIG. 8. Fluctuation splitting on unstructured mesh, circular advection.

Non-linear Advection

The two-dimensional inviscid Burgers equation, a non-linear advection equation, is ob-
tained from Eq. (1) by settingEF = (u2/2, u) with ν= 0. In non-conservative form the
equation is written

ut + uux + uy = 0.

FIG. 9. Finite volume on unstructured mesh, circular advection.
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FIG. 10. Fluctuation splitting, Burgers equation.

A coalescing shock problem is considered, with an anti-symmetric input profile,

u(−1, y) = u(0, y) = 0

u(x, 0) = −2x − 1 onx = (−1, 0).

The exact solution to this problem contains symmetric expansion fans on the sides and
a compression fan at the inflow that coalesces into a vertical shock at(x, y)= (−1

2, 1
2).

The fan and shock structures are features that have direct counterparts in compressible gas
dynamics.

The first mesh is cut-Cartesian containing 26× 26 nodes. The FS and FV solutions, both
using the Minmod limiter, are presented in Figs. 10 and 11, respectively. Both algorithms
exhibit the same grid dependence on the amount of artificial dissipation as seen before, with
the left-half solutions having more diffusion than the right-half solutions due to the grid
orientation. Both methods perform the same in the compression-fan region, coalescing into
a shock to within the accuracy of the input-profile discretization. The shock is more sharply
defined by FS than by FV. Figure 10 shows the correct shock speed, with nearly the entire
gradient captured in one cell thickness. In contrast, Fig. 11 shows a slightly incorrect shock
speed when using FV, as the shock progresses to the left beyond the coalescence point, even
though the discretization is conservative. The incorrect shock speed results from a non-
symmetric distribution of the dependent variable to the left and right of the shock, caused
by the excessive artificial diffusion generated on the grid-misaligned (left-hand) side.

Contours of the absolute value of the error are presented in Figs. 12 and 13. Errors from
both computed solutions show a lack of symmetry, again reflecting the grid dependence of
the artificial diffusion terms. The error levels from FS are less than from FV. The shock
curvature in the FV solution at the coalescing point is clearly visible in Fig. 13, resulting in
significant downstream errors in the shock location as compared with the FS errors.
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FIG. 11. Finite volume, Burgers equation.

This problem was repeated on a 25× 25 mesh with symmetric diagonal cuts, favorably
aligned with the advection directions (results presented in [19]). Both schemes produce the
correct shock speed with symmetric error distributions on the symmetric mesh, with the
same trend that FS has lower error levels than FV.

FIG. 12. Fluctuation splitting, Burgers equation, absolute error.
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FIG. 13. Finite volume, Burgers equation, absolute error.

The final mesh for this case is a non-uniform unstructured triangulation containing 847
nodes and 1617 cells. The nodes are clustered to the outflow boundary, with a bias towards
the left-hand side. The FS solution is presented in Fig. 14, showing very accurate and crisp
shock resolution and good symmetry in the solution contours despite the mesh-clustering

FIG. 14. Fluctuation splitting, Burgers equation, unstructured mesh.
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FIG. 15. Finite volume, Burgers equation, unstructured mesh.

bias. In contrast, the FV solution in Fig. 15 has a more diffuse shock and again an incorrect
shock speed, with the outflow shock offset to the left ofx=− 1

2. In general, the FV solution
is somewhat less symmetric than the FS solution.

Linear Diffusion

ChoosingEF = 0, the diffusive heat-conduction equation is obtained from Eq. (1),

ut = ∇ · (ν∇u).

The test problem, a steady-state boundary value problem on a unit square, is taken from
Tomaich [4]. The Dirichlet boundary values are

u(−1, y) = 0, u(0, y) = sin(πy) (43)

u(x, 0) = 0, u(x, 1) = − sin(πx). (44)

The analytical solution onx= [−1, 0], y= [0, 1] is

u(x, y) = 1

sinhπ
[sinh(π(x + 1)) sin(πy)+ sinh(πy) sin(π(x + 1))].

Both diffusion discretizations, Eqs. (10) and (28), are compared on a 438-node unstruc-
tured mesh. Figures 16 and 17 plot the absolute value of the error in the converged solutions
using Eqs. (10) and (28), respectively.

The treatment of Eq. (28) is clearly more accurate for this case, and is used to discretize
the diffusion terms for both FV and FS in the following section. The average-gradient
results in Fig. 16 appear to exhibit a decoupling mode, similar to odd/even decoupling for
structured meshes.



370 WOOD AND KLEB

FIG. 16. Pure-diffusion problem error, diffusion terms from Eq. (10).

FIG. 17. Pure-diffusion problem error, diffusion terms from Eq. (28).
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TABLE 1

Grids and Solution Times for Advection–Diffusion Problem

CPU seconds

Mesh Nodes FS FV

A 134 <1 <1
B 495 1 1
C 1,928 5 8
D 7,529 64 145
E 28,915 760 1880

Linear Advection–Diffusion

The final test case is the linear advection–diffusion problem of Smith and Hutton [22].
The flux function isEF = Eλu, with

Eλ = (2y(1− x2),−2x(1− y2)).

The streamlines for this problem, while not exactly circular, are similar in orientation to
those for the circular advection problem, with the domain as a unit square in the second
quadrant. The inflow profile is

u(x, 0) = 1+ tanh(20x + 10).

The diffusion coefficient is chosen to be a constant,ν= 10−3. No closed-form solution is
known to the authors for this problem. A small diffusion coefficient is chosen to mimic
behavior that might be expected in a high-Reynolds-number shear flow. Another analogy
is to the diffusion of species in multi-component gas dynamics.

A sequence of five non-uniform unstructured meshes is considered. The meshes have
no preferred clustering or stretching and have nominal node-spacings of 0.1, 0.05, 0.025,
0.0125, and 0.00625, labeled as Meshes A, B, C, D, and E, respectively. The number of
nodes for each mesh, along with the solution times for both FS and FV on a 195-MHz SGI
R10000 CPU, are listed in Table 1.

L2-Norms of the artificial and physical viscosities computed using both FS and FV are
presented for each mesh in Table 2. Notice that the norm of the artificial dissipation for

TABLE 2

L2-Norms (×105) of Artificial and Physical Viscosities for Advection–Diffusion Problem

FS FV

‖φ‖2 ‖φυ‖2 ‖8‖2 ‖φυ‖2

(art.) (phys.) Mesh (art.) (phys.)

1274 215 A 1918 190
597 265 B 640 176
192 161 C 144 119
54 76 D 46 66
13 36 E 18 36
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FIG. 18. Fluctuation splitting profiles on finest mesh, advection–diffusion problem.

both FV and FS is lower than the norm of the physical dissipation for Meshes D and E.
Since the algorithms select only the larger of the physical or artificial dissipation (Eq. (29)),
Table 2 suggests that both schemes are grid resolved by Mesh D. However, the norm of the
physical dissipation is smaller for FV than FS on each mesh A–D. The physical viscosity is
driven by the solution curvature, suggesting FS maintains the solution profile sharper than
FV on the coarser meshes. To verify this interpretation, a comparison of outflow profiles
follows.

Further evidence of a grid-resolved FS solution is seen in Figs. 18 and 19. The FS
solution on Mesh E at the outflow boundary is presented along with the inflow profile
and the corresponding pure-advection (ν= 0) FS solution in Fig. 18. The pure-advection
solution is seen to replicate the inflow profile, with a clear separation from the diffused,
ν= 10−3, solution. Plotting only the FS results with respect to grid refinement, Fig. 19
shows grid convergence of the outflow profile by Mesh C.

The relative accuracy of FS and FV are compared in Fig. 20, where the outflow solutions
from FS and FV are plotted for Meshes C and E. Taking the grid-converged FS Mesh-E
solution to be the true solution, it is clear that FS reaches the grid converged solution on a
coarser mesh than FV.

Computational efficiencies of the two algorithms are compared in Fig. 21, where the
L2-norm of the residual is plotted versus CPU time for the fine-mesh FS and FV solutions,
along with the FS convergence history on Mesh D. The Mesh-E FS solution converges in
760 s. The corresponding FV solution takes 2.5 times longer than FS, due, in part, to the need
to reconstruct gradient information at each node with FV for second-order spatial accuracy.
However, considering the solution time to reach a given accuracy, it is more reasonable to
compare the FS solution time on Mesh D to the finest-mesh FV solution. The FS Mesh-D
solution took only 64 s, a factor of 29 times less than FV on Mesh E, and still shows better
accuracy than the fine-mesh FV solution.
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FIG. 19. Fluctuation splitting grid convergence, advection–diffusion problem.

An even greater speedup is seen with FS in conjunction with the van Albada limiter, where
now the Mesh-B solution overplots the curve from the finest grid, shown in Fig. 22. The
corresponding FV result using the van Albada limiter on Mesh B is included and clearly falls
short of the FS accuracy. The FV case was repeated with the highly compressive Superbee
limiter with little improvement in accuracy. The solution time for FS on Mesh B is about
1 s, yielding a speedup factor of 2–3 orders of magnitude over FV.

FIG. 20. Fluctuation splitting and finite volume for advection–diffusion problem.
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FIG. 21. Convergence histories for advection–diffusion problem.

The final set of results addresses convergence issues while pushing the positivity limits.
Figure 23 compares two convergence histories for the second-order FS on Mesh B. The
non-converging, though stable, convergence history is the result of using strict positivity ar-
guments to set the timestep (Eq. (37)). The resulting solution is bounded and approximately
correct but oscillatory. Limiter “ringing” is considered to be a contributor to this behavior,

FIG. 22. Advection–diffusion results using van Albada limiter.
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FIG. 23. Convergence rates using first- and second-order positivity coefficients.

and the higher-order discretization for the implicit matrix could be reducing the diagonal
dominance, and hence stability, of the Gauss–Seidel iteration.

Full convergence is achieved by using the first-order positivity coefficients for the timestep,
which are not dependent on the limiters, in conjunction with the second-order spatial dis-
cretization. The resulting local timesteps will not be as large as true second-order positivity
would allow, but appear to be more robust.

SUMMARY OF RESULTS

Fluctuation splitting and finite volume schemes are compared in detail as applied to scalar
advection, diffusion, and advection–diffusion problems. The specific test cases are chosen to
illustrate features present in compressible gas dynamics, including expansion/compression
fans and shocks for inviscid flow and high-Reynolds-number shear for viscous flows. The
extensions of these schemes to systems is not covered, but is an active research area.

For the scalar equations, the fluctuation splitting scheme is seen to introduce less artificial
dissipation while treating advection terms, allowing for more accurate resolution of weakly
dissipative advection–diffusion problems. The ability to resolve solutions to these problems
on coarser meshes makes the fluctuation splitting scheme the clear choice over finite volume.

Linear advection test problems are utilized to investigate the dependence of artificial dif-
fusion production on grid orientation. Both fluctuation splitting and finite volume are shown
to exhibit grid dependencies, but fluctuation splitting produces less artificial dissipation on
all grids considered.

A non-linear coalescing shock problem further explores grid dependencies, as cases are
constructed that result in incorrect shock speeds for finite volume. Fluctuation splitting
shows correct shock speeds for all grids and provides tighter shock capturing than finite
volume.
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An advection–diffusion problem with small physical dissipation (diffusion coefficient of
10−3) is considered where the reduction in artificial dissipation with fluctuation splitting
results in a significant accuracy improvement over finite volume. Convergence times are
compared, showing a speedup of 2.5 for fluctuation splitting over finite volume on identical
grids, using a point Gauss–Seidel relaxation. However, a grid convergence study shows
fluctuation splitting produces better resolution of the solution on a coarser mesh than finite
volume does on a finer mesh, resulting is a speedup of 29 for fluctuation splitting over finite
volume to generate a solution of comparable accuracy.
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